FÍSICA MODERNA - 1/2011

LISTA 3

- 1. Considere a colisão entre duas bolas de bilhar discutida em sala.
- (a) Use a regra de soma de velocidades clássica para obter as componentes das velocidades medidas em S, supondo que a relação entre S e S é dada pela transformação de Galileu.
- (b) Use agora a regra de soma de velocidades relativística para obter as mesmas componentes das velocidades medidas em S.
- (c) Mostre que o resultado obtido em (b) se reduz ao obtido em (a) quando todas as velocidades em jogo são suficientemente pequenas (O que quer dizer isso?).
- (d) Verifique que o momento total clássico $\Sigma m\vec{v}$, que é conservado em S, não é conservado em S, mas que o momento relativístico o é.

2.

- (a) Que velocidade um corpo deve ter para que sua energia relativística E seja o dobro de sua energia de repouso mc^2 ?
- (b) Que velocidade um corpo deve ter para que sua energia cinética relativística seja o dobro de sua energia de repouso mc^2 ?

3.

- (a) Vimos que o momento relativístico $\vec{p} = \gamma m \vec{v}$ pode ser expresso como $\vec{p} = m \frac{d\vec{r}}{dt_0}$, onde dt_0 denota o intervalo de tempo próprio entre dois pontos vizinhos sobre a trajetória (e tem o mesmo valor para todos os observadores inerciais). Mostre que a energia relativística $E = \gamma mc^2$ pode também ser escrita como $E = mc^2 \frac{dt}{dt_0}$.
- (b) Suponha que um objeto de massa m tenha momento \vec{p} e energia E em relação a um referencial S. Use as relações relembradas no item (a) e a regra de transformação relativística para intervalos de tempo para encontrar os valores de \vec{p} e E medidos num segundo referencial S que se move com velocidade $\vec{V} = V\hat{x}$ com relação a S.
- (c) Use o resultado do item (b) para demonstrar que se o momento total e a energia de um sistema são conservados em um referencial inercial S, serão também conservados em qualquer outro referencial inercial S.

4.

- (a) Uma partícula tem massa $3GeV/c^2$ e momento 4GeV/c. Quais são sua energia e sua velocidade?
- (b) Um proton (massa de repouso $938MeV/c^2$ tem energia cinética 500MeV. Quais são seu momento (em unidades relativísticas e SI) e sua velocidade?
- (c) Observa-se que uma partícula tem momento 500 MeV/c e energia 1746 MeV. Quais são sua massa e velocidade?
- 5. Uma partícula Λ decai em um proton e um pion, $\Lambda \to p + \pi$, e se observa que o proton fica em repouso.
- (a) Qual a energia do pion?
- (b) Qual era a energia do Λ original? Dados: $m_{\Lambda} = 1116$, $m_p = 938$, $m_{\pi} = 140$, todas em MeV/c^2 .
- 6. O meson K^0 é uma partícula subatomica de massa $m_K = 498 MeV/c^2$ que decai em dois pions carregados, $K^0 \to \pi^+ + \pi^-$. estes dois pions tem cargas opostas e massas idênticas, $m_\pi =$

$140 MeV/c^2$.

- (a) Um K^0 em repouso decai em dois pions. Use a conservação de momento e energia para determinar a energia, momento e velocidade de cada um dos pions.
- (b) Considere agora que o K^0 se move inicialmente com velocidade 0,9c e que, depois do decaimento, o pino π^+ se move na mesma direção e mesmo sentido em que o K^0 se movia originalmente enquanto o π^- se move em sentido oposto. Use o resultado do item (a) para obter as velocidades dos pions.

7.

- (a) Um pion neutro que se move ao longo do eixo x decai em dois fotons, um que é ejetado na direção e sentido em que o pion se movia e outro que é ejetado em sentido oposto. O primeiro foton tem energia tres vezes maior que a do segundo. Prove que o pion se movia originalmente com velocidade 0,5c.
- (b) Um pion carregado positivamente decai em um muon e um neutrino, $\pi^+ \to \mu^+ + \nu$. A massa do pion é $m_\pi = 140 MeV/c^2$, a do muon é $m_\mu = 106 MeV/c^2$, e a do neutrino é muito pequena comparada com as anteriores e pode ser desprezada. Suponha que o pion original estivesse em repouso e use a conservação de energia e momento para provar que a velocidade do muon será dada por $v = \frac{(m_\pi/m_\mu)^2 1}{(m_\pi/m_\mu)^2 + 1}c$. Calcule este valor numericamente.